Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach
نویسندگان
چکیده
منابع مشابه
A Discrete Global Minimization Algorithm for Continuous Variational Problems
In this paper, we apply the ideas from combinatorial optimization to find globally optimal solutions to continuous variational problems. At the heart of our method is an algorithm to solve for globally optimal discrete minimal surfaces. This discrete surface problem is a natural generalization of the planar-graph shortest path problem.
متن کاملA Continuous Labeling for Multiphase Graph Cut Image Partitioning
This study investigates a variational multiphase image segmentation method which combines the advantages of graph cut discrete optimization and multiphase piecewise constant image representation. The continuous region parameters serve both image representation and graph cut labeling. The algorithm iterates two consecutive steps: an original closed-form update of the region parameters and partit...
متن کاملContinuous bottleneck tree partitioning problems
We study continuous partitioning problems on tree network spaces whose edges and nodes are points in Euclidean spaces. A continuous partition of this space into p connected components is a collection of p subtrees, such that no pair of them intersect at more than one point, and their union is the tree space. An edge-partition is a continuous partition de3ned by selecting p − 1 cut points along ...
متن کاملVerifying global minima for L2 minimization problems
We consider the least-squares (L2) triangulation problem and structure-and-motion with known rotatation, or known plane. Although optimal algorithms have been given for these algorithms under an L-infinity cost function, finding optimal least-squares (L2) solutions to these problems is difficult, since the cost functions are not convex, and in the worst case can have multiple minima. Iterative ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Vision
سال: 2010
ISSN: 0920-5691,1573-1405
DOI: 10.1007/s11263-010-0406-y